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Abstract

In a three-part study, the first part being this paper, the investigation of the three-dimensional nonlinear dynamics of

unrestrained and restrained cantilevered pipes conveying fluid is undertaken. The full derivation of the equations of

motion in three dimensions for the plain cantilevered pipe is presented first in this paper, using a modified version of

Hamilton’s principle, adapted for an open system. Intermediate (between the clamped and free end) nonlinear spring

constraints are then incorporated into the equations of motion via the method of virtual work. Furthermore, a point

mass fixed at the free end of the pipe is also added to the system. The equations of motion are presented in

dimensionless form and then discretized with Galerkin’s method.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Pipe conveying fluid; Cantilevered; Nonlinear equations; 3D motions; Additional intraspan spring support; Additional end-

mass; Hamilton’s principle
1. Introduction

Although the dynamics of pipes conveying fluid has been studied extensively over the past 50 years or so, most of the

theoretical models utilized have been two-dimensional.

Some of the earliest work [e.g. Feodos’ev (1951), Housner (1952)] showed that pinned–pinned and clamped–

clamped pipes conveying fluid may lose stability by divergence, i.e. they may buckle, at sufficiently high flow velocities.

Benjamin (1961a, b) was the first to undertake a thorough study of the dynamics of a cantilevered pipe conveying

fluid; this pioneering work is particularly well known for formulating a modified version of Hamilton’s principle

accounting for momentum flux in and out of the open system, which is still used today and will in fact be used in this

work. Later work by Gregory and Paı̈doussis (1966a, b) showed that cantilevered pipes lose stability via flutter for

sufficiently high flow velocities. Two-dimensional (2-D) theory is sufficient for predicting the buckling (static

divergence) of a simply supported pipe, or the dynamic instability of a cantilevered one, since these are physically planar

bifurcations.

In 1970–2000 period, the literature on this topic literally exploded, with linear and nonlinear, two- and three-

dimensional, theoretical and experimental studies, both for the plain pipe and for pipes with added spring supports,

masses and dashpots, somewhere along the length of the pipe. This was the result of gradual realization that this
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problem is a new paradigm in dynamics, displaying in a simple system a wide variety of the dynamics of more complex

engineering problems; moreover, the fluid-conveying pipe system has the advantage that one can fairly easily conduct

experiments to test the theory. A thorough literature review will not be undertaken in this paper. For that, the reader is

referred to Paı̈doussis and Li (1993) and Paı̈doussis (1998). Also, more complete literature reviews on the particular

topics of the Parts 2 and 3 papers may be found therein.

As is evident from even a casual perusal of Paı̈doussis (1998), the cantilevered pipe conveying fluid, being an

inherently nonconservative system, is capable of displaying a seemingly inexhaustible variety of interesting and often

surprising behaviour—much more than a pipe with both ends supported. Accordingly, the system considered in this

paper, whether with intermediate springs or with an end mass (defined below), involves a cantilevered pipe.

The purpose of this paper is to present the derivation of the three-dimensional (3-D) nonlinear equations of motion

of the fluid-conveying cantilevered pipe, also incorporating an ‘‘intermediate’’ or ‘‘intraspan’’ spring support (i.e. a

spring support somewhere between the fixed and the free end of the pipe), as well as an ‘‘end-mass’’ (i.e. a relatively

small mass attached at the free end of the pipe). Remarkable previous work on the dynamics of the plain cantilevered

pipe has been conducted by Bajaj and Sethna (1984), and for the pipe fitted with a bent end-nozzle by Lundgren et al.

(1979). Equally remarkable is a series of studies by Steindl and Troger (1988, 1991, 1995, 1996), focussing on the 3-D

motions of a cantilevered pipe with an intermediate spring support, revealing a veritable cornucopia of dynamical

behaviour. In these studies, different, but equivalent, forms of the 3-D equations of motion to those obtained here were

derived.

The equations derived in this (Part 1) paper are used in Part 2 (Paı̈doussis et al., 2007), which deals exclusively with

the 3-D nonlinear dynamics of a cantilevered pipe with an intermediate spring support. In addition to the

aforementioned work by Steindl and Troger, the theoretical and experimental work by Paı̈doussis and Semler (1993)

should be mentioned. The main objective of that paper was the study of the dynamics in the neighbourhood of the state

of double degeneracy, when buckling (divergence) and flutter occur at the same flow velocity, achieved by a judicious

choice of location and stiffness of the intermediate spring.

The dynamics of a cantilevered pipe with an end-mass is the subject of the Part 3 paper (Modarres-Sadeghi et al.,

2007). In this case also, a literature review may be found in that paper. However, the work by Paı̈doussis and Semler

(1998) should be mentioned, and particularly that of Copeland and Moon (1992); in the latter, it was shown that,

depending on the size and weight of the end-mass, as well as the flow velocity, an intricate sequence of generally 3-D

and chaotic oscillations can occur.

In both Parts 2 and 3, the theoretical results, obtained by means of the equations derived here, are compared with

experimental observations and previous theoretical models. Indeed, it should be said that the rich 3-D dynamics

observed in the aforementioned experiments, mainly those by Copeland and Moon (1992) but also those by Paı̈doussis

and Semler (1993, 1998), was responsible for giving the main impetus for this three-part study.

In Parts 2 and 3 of this study, the main interest is in the post-critical dynamics of the system; i.e. the dynamics beyond

the first bifurcation encountered by the system, which can also be predicted by linear theory. For the system with an

intraspan spring (Part 2), this first bifurcation is related to loss of stability by divergence or flutter, depending mainly on

the location and strength of these springs. In Part 2, the dynamics beyond that point is explored (i.e. for higher flow

rates), focussing on the determination and characterization of any additional bifurcations. The same applies to the

system with an added end mass (Part 3), where the dynamics is explored beyond the onset of flutter, focussing on

additional bifurcations and on whether the motions are two- or three-dimensional.

Finally, it should be made clear that this three-part paper reports on a fundamental, curiosity-driven investigation.

Although a number of applications do exist for the general topic of pipes conveying fluid (Paı̈doussis, 1998, Section 4.7),

e.g. the Coriolis mass-flow meter, ocean mining and the hydroelastic ichthyoid propulsion system, the main motivation

for this work does not come from applications. Nevertheless, as amply demonstrated in Paı̈doussis (1993), although

research in the broad area of fluid–structure interactions involving axial flow is often undertaken with little or no

application in mind, unexpected uses and applications emerge, 10, 20 or 50 years later.
2. Problem statement

In this paper, we consider a vertical cantilevered pipe of length L, mass per unit length m and of flexural rigidity EI,

conveying a fluid of mass per unit length M with mean axial velocity U; see Fig. 1.

The equations of motion are obtained under the following assumptions: (i) the fluid is incompressible; (ii) the flow is

of constant velocity and free from pulsation; (iii) the pipe behaves like a nonlinear Euler–Bernoulli beam (the diameter

is small compared to the length); (iv) the strain in the pipe is considered small, although large deflections are expected;

(v) rotary inertia and shear deformation are neglected; (vi) the pipe centreline is inextensible; (vii) in the case of the pipe
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Fig. 2. Diagram illustrating the Lagrangian ðX o;Y o;Zo) and Eulerian ðx; y; zÞ coordinate systems and a representative segment on the

pipe centreline identified according to the Lagrangian system, PoðX o; 0; 0Þ, and the Eulerian system, Poðx; y; zÞ � PoðX o þ u; v;wÞ.

Fig. 1. Diagram of a cantilevered pipe conveying fluid with flow velocity U . Also shown are ‘‘intermediate springs’’ (of individual

stiffness k) and an end-mass (of mass me) which may be added to the basic system. (a) Undeformed system; (b) deformed system.
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with an intermediate spring support, the springs are assumed to be attached to the centreline of the pipe1; (viii) the end-

mass is assumed to be a point mass.

The Lagrangian coordinate system is introduced here as (X 0, Y 0, Z0), labelling specific particles at a certain place and

time taken at the original equilibrium state of the pipe, to create a relation between the Eulerian coordinate system (x, y,

z) and the displacement (u, v, w) of any particular material point on the pipe (Fig. 2). The two coordinate systems are

related as follows:

x ¼ X 0 þ u; y ¼ Y 0 þ v; z ¼ Z0 þ w. (1)
1This assumption will be modified in Appendix C of this paper and will be discussed in Part 2 (Paı̈doussis et al., 2007) of this study.
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By setting the Eulerian coordinate x, or the Lagrangian coordinate X 0, along the pipe centreline in the equilibrium

configuration when the free pipe is at rest, Y 0 and Z0 become zero. The x-axis is defined to coincide with the direction

of gravity.

It is useful to define a curvilinear coordinate s, along the length of the pipe. Because the pipe has been assumed to be

inextensible, it follows that X 0 � s. Through simple derivations (Paı̈doussis, 1998) the inextensibility condition may be

stated as follows:

qx

qs

� �2

þ
qy

qs

� �2

þ
qz

qs

� �2

¼ 1, (2)

or

1þ
qu

qs

� �2

þ
qv

qs

� �2

þ
qw

qs

� �2

¼ 1. (3)

The inextensibility condition will be used, in different variations of the above and often as a linear or third-order

approximation, to reduce the system of three partial differential equations of motion down to two, involving y and z, or

in terms of v and w.

The methods used to obtain the 3-D model presented here were inspired by previous derivations of the 2-D governing

equation of motion for a cantilevered pipe conveying fluid (Semler et al., 1994).

The starting point of the derivation is a modified version of Hamilton’s principle, where the right-hand side accounts

for the energy gained or lost at the free end of the pipe (Benjamin, 1961a,b):

d
Z t2

t1

Ldtþ

Z t2

t1

dW dt ¼

Z t2

t1

MU
qrL

qt
þUsL

� �
� drL

� �
dt. (4)

In Eq. (4), L represents the Lagrangian of the system (L ¼ Tp þ Tf � Vp � Vf ), where T and V represent the

kinetic and potential energy, respectively, and the subscripts p and f refer to the pipe and the fluid, respectively; dW is

the virtual work which accounts for the forces not included in the Lagrangian. The right-hand side of Eq. (4) can be

viewed as the virtual momentum transport across the open surface at the end of the pipe. The subscript L on the right-

hand side of Eq. (4) specifies that the vector is measured at s ¼ L.

On the right-hand side of Eq. (4), r is a position vector and s is the tangent vector at any point of the pipe. They may

be expressed as follows:

r ¼ xi þ yj þ zk ¼ ðsþ uÞi þ vj þ wk, (5)

s ¼
qx

qs
i þ

qy

qs
j þ

qz

qs
k ¼ 1þ

qu

qs

� �
i þ

qv

qs
j þ

qw

qs
k. (6)

Although assumption (iv) states that one can expect large deflections, an order of magnitude analysis in the planes of

lateral motion shows that z (or displacement w) and y (or displacement v) can be considered small, defined as being of

the order �, such that

z ¼ w ¼ Oð�Þ, (7)

y ¼ v ¼ Oð�Þ. (8)

The derivation of the equations of motion undertaken here accounts only for nonlinear terms up to the third order,

Oð�3Þ.2

Additional constraints to the system, such as an intermediate spring support, can be incorporated into the equations

of motion by the principle of virtual work. In Eq. (4) the virtual work, dW , represents the work done by the sum of

forces acting on the pipe, as a result of a virtual displacement.

Let us consider a distributed force (moment) along the length of the pipe, Q(s), which is a function of the centreline

deformation, uðs; tÞ, vðs; tÞ and wðs; tÞ (or corresponding rotations if Q is a moment), i.e.

Q ¼ Qðu; v;wÞ ¼ Q1i þQ2j þQ3k, (9)
2In the derivations, fx; y; zg or fu; v;wg are used, as convenient. Particularly in all derivations related to the intermediate springs the

fu; v;wg system is used. The final equations of motion will be expressed in terms of u; v and w (u will be implicitly present through the

inextensibility condition).
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which may be rewritten such that

Q1 ¼ Fu; Q2 ¼ Fv; Q3 ¼ Fw, (10)

in which Fu, Fv and Fw may be thought of as forces per unit length acting, respectively, in the x; y and z directions. The

virtual work done by these forces, associated with displacements du, dv and dw, is

dW ¼

Z L

0

ðFuduþ Fvdvþ FwdwÞds. (11)

One more relationship that will come handy is the expression for curvature in three-dimensional coordinates

(Lundgren et al., 1979), expressed as

k2 ¼
q2x

qs2

� �2

þ
q2y

qs2

� �2

þ
q2z

qs2

� �2

¼
q2u

qs2

� �2

þ
q2v

qs2

� �2

þ
q2w

qs2

� �2

. (12)
3. The plain cantilevered pipe

The kinetic energy of a plain cantilevered pipe (i.e. in the absence of spring constraints and end-mass) conveying fluid

can be expressed as follows:

T ¼ Tp þ Tf ¼
1

2
m

Z L

0

m2p dsþ
1

2
M

Z L

0

m2f ds, (13)

where mp and mf are the pipe and fluid velocities, defined, respectively, by

mp ¼
qr

qt
¼

qx

qt
i þ

qy

qt
j þ

qz

qt
k ¼

qu

qt
i þ

qv

qt
j þ

qw

qt
k, (14)

mf ¼
q
qt
þU

q
qs

� �
ðxi þ yj þ zkÞ �

Dr

Dt
. (15)

Substituting Eqs. (14) and (15) into Eq. (13), then applying Hamilton’s variational operator, d, on the latter, and

using the inextensibility condition, one obtains after some manipulation

d
Z t2

t1

T dt ¼ �

Z t2

t1

Z L

0

ðmþMÞ €yþ y0
Z s

0

ð _y02 þ y0 €y0 þ _z02 þ z0 €z0Þds

� �
dydsdt

þ

Z t2

t1

Z L

0

ðmþMÞ y00
Z s

0

Z L

s

ð _y02 þ y0 €y0 þ _z02 þ z0 €z0Þdsds

� �
dydsdt

�

Z t2

t1

Z L

0

2MU _y0ð1þ y0
2
Þ þ y0z0 _z0 � y00

Z L

s

ðy0 _y0 þ z0 _z0Þds

� �
dydsdt

�

Z t2

t1

Z L

0

ðmþMÞ €zþ z0
Z s

0

ð_z02 þ z0 €z0 þ _y02 þ y0 €y0Þds

� �
dzdsdt

þ

Z t2

t1

Z L

0

ðmþMÞ z00
Z s

0

Z L

s

ð_z02 þ z0 €z0 þ _y02 þ y0 €y0Þdsds

� �
dzdsdt

�

Z t2

t1

Z L

0

2MU _z0ð1þ z0
2
Þ þ z0y0 _y0 � z00

Z L

s

ðz0 _z0 þ y0 _y0Þds

� �
dzdsdt

þMU

Z t2

t1

ð _xLdxL þ _yLdyL þ _zLdzLÞdt, ð16Þ

where the overdot stands for qð Þ=qt, and the prime stands for qð Þ=qs.

The potential energy of the system has two components: the pipe strain energy, Vps, and the gravitational energy of

both pipe and fluid, Vg ¼ Vpg þ Vfg. The expression for potential strain energy, related uniquely to the material
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properties of the pipe, may be written as

d
Z t2

t1

Vps dt ¼
1

2
EI

Z t2

t1

Z L

0

dðk2Þdsdt ¼
1

2
EI

Z t2

t1

Z L

0

ðdx002 þ dy002 þ dz002Þdsdt, (17)

where k is the curvature of the pipe.

As seen above, the variational operator needs to be applied to the expression for curvature, Eq. (12). The

inextensibility condition, Eq. (2), is then applied to the x-component of curvature, leading to the following expression

for the strain energy in the system:

d
Z t2

t1

Vps dt ¼
1

2
EI

Z t2

t1

Z L

0

ðdðy02y002 þ 2y0y00z0z00 þ z0
2
z002Þ þ dy002 þ dz002Þdsdt

¼ EI

Z t2

t1

Z L

0

ðy0000 þ y003 þ 4y0y00y000 þ y0
2
y0000Þdydsdt

þ EI

Z t2

t1

Z L

0

ðy00z002 þ y00z0z000 þ 3y0z00z000 þ y0z0z0000Þdydsdt

þ EI

Z t2

t1

Z L

0

ðz0000z003 þ 4z0z00z000 þ z0
2
z0000Þdzdsdt

þ EI

Z t2

t1

Z L

0

ðz00y002 þ z00y0y000 þ 3z0y00y000 þ z0y0y0000Þdydsdt. ð18Þ

The potential energy due to gravity can be expressed as

Vg ¼ �ðmþMÞg

Z L

0

xds. (19)

By substituting the inextensibility condition into Eq. (19), applying the variational operator and integrating by parts,

the following expression may be obtained:

d
Z t2

t1

Vg dt ¼ � ðmþMÞg

Z t2

t1

Z L

0

dxds

¼ ðmþMÞg

Z t2

t1

Z L

0

z0 þ
1

2
z0
3
þ

1

2
z0y0

2

� �� �
dzdsdt

� ðmþMÞg

Z t2

t1

Z L

0

ðL� sÞ z00 þ
3

2
z0
2
z00 þ

1

2
y0

2
z00 þ z0y0y00

� �� �
dzdsdt

þ ðmþMÞg

Z t2

t1

Z L

0

y0 þ
1

2
y0

3
þ
1

2
y0z0

2

� �� �
dydsdt

� ðmþMÞg

Z t2

t1

Z L

0

ðL� sÞ y00 þ
3

2
y0

2
y00 þ

1

2
z0
2
y00 þ y0z0z00

� �� �
dydsdt. ð20Þ

Finally, the terms associated with end effects due to the open nature of the system are developed by substituting Eqs.

(5) and (6) into the right-hand side of Eq. (4), yielding

Z t2

t1

MU
qrL

qt
þUsL

� �
� drL

� �
dt

¼

Z t2

t1

MU ½ _xLi þ _yLj þ _zLkþUðx0Li þ y0Lj þ z0LkÞ� � ðdxLi þ dyLj þ dzLkÞdt

¼MU

Z t2

t1

ð _xLdxL þ _yLdyL þ _zLdzLÞdtþMU2

Z t2

t1

ðx0LdxL þ y0LdyL þ z0LdzLÞdt. ð21Þ



ARTICLE IN PRESS
M. Wadham-Gagnon et al. / Journal of Fluids and Structures 23 (2007) 545–567 551
It should be noticed that the first part of Eq. (21) will cancel out with the last part of the kinetic energy expression,

Eq. (16). The last part of Eq. (21) must undergo certain manipulations; to this end, it may be shown that

MU2

Z t2

t1

ðx0LdxL þ y0LdyL þ z0LdzLÞdt

¼MU2

Z t2

t1

Z L

0

ðx00dxþ x0dx0 þ y00dyþ y0dy0 þ z00dzþ z0dz0Þdsdt. ð22Þ

The inextensibility condition can be rewritten as: x0dx0 þ y0dy0 þ z0dz0 ¼ 0, so that Eq. (22) becomes

MU2

Z t2

t1

Z L

0

ðx00dxþ y00dyþ z00dzÞdsdt. (23)

Applying the inextensibility condition again, integrating by parts, using the following property of integrals (Semler et

al., 1994):

Z L

0

gðsÞ

Z s

0

f ðsÞdyds

� �
ds ¼

Z L

0

Z L

s

gðsÞds

� �
f ðsÞdyds, (24)

and after some further manipulation, the right-hand side of the modified form of Hamilton’s principle becomes

MU2

Z t2

t1

ðx0LdxL þ y0LdyL þ z0LdzLÞdt

¼MU2

Z t2

t1

Z L

0

ðx00dxþ y00dyþ z00dzÞdsdt

¼MU2

Z t2

t1

Z L

0

y00ð1þ y0
2
Þ � y00

Z L

s

y0y00 dsþ z0z00y0 � y00
Z L

s

z0z00 ds

� �
dydsdt

þMU2

Z t2

t1

Z L

0

z00ð1þ z0
2
Þ � z00

Z L

s

z0z00 dsþ y0y00z0 � z00
Z L

s

y0y00 ds

� �
dzdsdt. ð25Þ

Eqs. (16), (18), (20) and (25) are sufficient for obtaining the equations of motion for the plain pipe. Instead of doing

so, the spring and end-mass forces are derived first; the equations of motion for the plain pipe can then be obtained by

eliminating the appropriate terms from the final form of the equations, Eqs. (40) and (41).
4. The pipe with four intermediate springs

An array of four linear springs attached to the centreline of the pipe at an intermediate position s ¼ Ls, and

symmetrically disposed with respect to the y and z axes is considered (a schematic representation is given in Fig. 3).

The forces that an array of N identical springs exerts on the pipe can be expressed as

Fs ¼ k
XN

i¼1

ðRi � LoÞnRi
, (26)

here N ¼ 4, and i ¼ 1; 2; 3; 4 designates each spring of the array. The coefficient k is the linear stiffness of a spring, and

Lo its unstretched length. Ri is the length of spring i when stretched, and nRi
is a unit vector along its length, the

direction of which is shown in Fig. 3. The scalar value of Ri is determined according to dimensions P and Q (Fig. 3) and

the pipe displacements at s ¼ Ls: uLs
, vLs

and wLs
.

Although the spring coefficient is assumed to be linear, the equivalent forces of the four springs acting on the pipe

become nonlinear due to the deformation of the system (geometric nonlinearity).

Unlike the derivations for the plain pipe, which can be found in detail elsewhere [e.g. in Semler et al. (1994)], this is

the first presentation of the nonlinear forces associated with the intermediate springs. Therefore, some of the

intermediate steps in the derivation are given in fair detail in Appendix A. As already remarked, these derivations, for
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Fig. 3. Forces exerted on the pipe due to the four-spring configuration, when the springs are assumed to be connected to the centreline

of the pipe. The springs are disposed in symmetrical fashion with respect to the z and y axes. y, P and Q are predetermined and

P2 þQ2 ¼ R2
o.
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convenience, will be done in the fu; v;wg framework, rather than using fx; y; zg. Briefly, after application of the

inextensibility condition and Taylor expansions, the components of the spring forces in Eq. (26) may be written as

Fu ¼ 2k 1�
Lo

Ro

� �
dðs� LsÞ

Z s

0

ðv0
2
þ w0

2
Þds, (27)

Fv ¼ dðs� LsÞ �4k 1�
Lo

Ro

cos2 y
� �

v

�

�2k
Lo

R3
o

cos2 yðcos2 y� 4 sin2 yÞv3 � 2k
Lo

R3
o

ð15 cos2 y sin2 y� 2Þvw2

)
, ð28Þ

Fw ¼ dðs� LsÞ �4k 1�
Lo

Ro

sin2 y
� �

w

�

�2k
Lo

R3
o

sin2 yðsin2 y� 4 cos2 yÞw3 � 2k
Lo

R3
o

ð15 cos2 y sin2 y� 2Þwv2

)
. ð29Þ

The spring forces are expressed in component form in Eqs. (27)–(29); the subscripts u, v and w are associated with the

forces acting in the x, y and z directions, respectively. The Dirac delta function, dðs� LsÞ, simply indicates that these

equivalent forces apply only at one point along the centreline of the pipe, i.e. where the springs are assumed to be

attached.

Note that y is measured with respect to the z-axis. Thus, for yo45� the spring array is narrower along the z-axis, as

shown in Fig. 3.

For a spring array of specified geometry, expressions (27)–(29) may be rewritten in a simplified manner as

Fu ¼ Kxdðs� LsÞ

Z s

0

ðv0
2
þ w0

2
Þds, (30)

Fv ¼ dðs� LsÞð�Kylv� Kynlv
3 � Kyzvw2Þ, (31)

Fw ¼ dðs� LsÞð�Kzlw� Kznlw
3 � Kyzwv2Þ, (32)

where the K’s represent constant coefficients. The subscripts make reference to the direction in which they have

influence (x, y or z) as well as to whether they are associated with linear (l) or nonlinear (nl) terms.

The forces acting on the pipe may be introduced into Hamilton’s principle through the principle of virtual work, as in

Eq. (4). The virtual work associated with virtual displacements du, dv and dw is given by

dW u ¼

Z L

0

Fududs ¼

Z L

0

Kx

Z s

0

ðv0
2
þ w0

2
Þds

� �
dðs� LsÞ duds, (33)
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dW v ¼

Z L

0

Fvdvds ¼ �

Z L

0

ðKylvþ Kynlv
3 þ Kyzvw2Þdðs� LsÞ dvds, (34)

dW w ¼

Z L

0

Fwdwds ¼ �

Z L

0

ðKzlwþ Kznlw
3 þ Kyzwv2Þdðs� LsÞ dwds. (35)

The inextensibility condition is then applied to the expression of virtual work acting in the axial-direction, dW u,

together with Eq. (24). After some further manipulation, an expression compatible with Hamilton’s principle for the

virtual work done on the pipe, at s ¼ Ls, by an array of four intermediate springs is obtained, namely

Z t2

t1

dW dt ¼

Z t2

t1

ðdW u þ dW v þ dW wÞdt

¼ �

Z t2

t1

Z L

0

ðKzlwþ Kznlw
3 þ Kyzwv2Þdðs� LsÞ dwdsdt

�

Z t2

t1

Z L

0

Kx

Z s

0

ðv0
2
þ w0

2
Þds

� �
dðs� LsÞw

0

� �
dwdsdt

þ

Z t2

t1

Z L

0

Kxw00mð0! LsÞ

Z Ls

0

ðv0
2
þ w0

2
Þds

� �
dwdsdt

�

Z t2

t1

Z L

0

ðKylvþ Kynlv
3 þ Kyzvw2Þdðs� LsÞ dvdsdt

�

Z t2

t1

Z L

0

Kx

Z s

0

ðv0
2
þ w0

2
Þds

� �
dðs� LsÞv

0

� �
dvdsdt

þ

Z t2

t1

Z L

0

Kxv00mð0! LsÞ

Z Ls

0

ðv0
2
þ w0

2
Þds

� �
dvdsdt, ð36Þ

where mð0! LsÞ is a Heavyside function defined as having a value of 1 for the interval s ¼ 0 to Ls and a value of 0 from

s ¼ Ls to L.

Certain variations to the basic system of four springs as analyzed above are considered in the Part 2 paper (Paı̈doussis

et al., 2007): (i) a two- rather than four-spring configuration, and (ii) a more realistic geometry of attachment of the

springs to the pipe. Accordingly, a system with a two-spring configuration is considered in Appendix B, and the

moments induced by an array of springs not attached to the centreline of the pipe but rather to a ring mounted on the

pipe are found in Appendix C.

5. The pipe with an end-mass

It is quite simple to add a point mass into the variational statement of Hamilton’s principle. It is assumed that a mass

me is located at the end of the pipe; then the Lagrangian, Le, associated with only this mass, takes the following form:

Le ¼ Te � Ve ¼
1
2með _x

2
L þ _y2L þ _z

2
LÞ �megxL. (37)

The steps followed to obtain the terms in the equations of motion related to the kinetic energy of the point mass are

comparable to those for the kinetic energy of the plain pipe. The kinetic energy associated with the end mass, similarly

to Eq. (13), may be written as

Te ¼
1

2
me

Z L

0

dðs� LÞð _x2 þ _y2 þ _z2Þds,

and following a comparable procedure as in the foregoing, the variational term, similar to Eq. (16), is

d
Z t2

t1

Te dt ¼
1

2
med

Z t2

t1

Z L

0

dðs� LÞð _x2 þ _y2 þ _z2Þdsdt

¼ �

Z t2

t1

Z L

0

medðs� LÞ €yþ y0
Z s

0

ð _y02 þ y0 €y0 þ _z02 þ z0 €z0Þds

� �
dydsdt
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þ

Z t2

t1

Z L

0

y00
Z L

s

medðs� LÞ

Z s

0

ð _y02 þ y0 €y0 þ _z02 þ z0 €z0Þdsds

� �
dydsdt

�

Z t2

t1

Z L

0

medðs� LÞ €zþ z0
Z s

0

ð_z02 þ z0 €z0 þ _y02 þ y0 €y0Þds

� �
dzdsdt

þ

Z t2

t1

Z L

0

z00
Z L

s

medðs� LÞ

Z s

0

ð_z02 þ z0 €z0 þ _y02 þ y0 €y0Þdsds

� �
dzdsdt. ð38Þ

As a result of the point-mass assumption, there is no strain energy to account for; hence the potential energy due to

the end mass is simply gravitational and it is found to be

d
Z t2

t1

Ve dt ¼ d
Z t2

t1

megxL dt ¼

Z t2

t1

megdxL dt

¼ �

Z t2

t1

Z L

0

meg dðs� LÞ z0 þ
1

2
z0
3
þ
1

2
z0y0

2

� �� �
dzdsdt

þ

Z t2

t1

Z L

0

meg z00 þ
3

2
z0
2
z00 þ

1

2
y0

2
z00 þ z0y0y00

� �Z L

s

dðs� LÞds

� �
dzdsdt

�

Z t2

t1

Z L

0

meg dðs� LÞ y0 þ
1

2
y0

3
þ

1

2
y0z0

2

� �� �
dydsdt

þ

Z t2

t1

Z L

0

meg y00 þ
3

2
y0

2
y00 þ

1

2
z0
2
y00 þ y0z0z00

� �Z L

s

dðs� LÞds

� �
dydsdt. ð39Þ

The kinetic and potential energies for the pipe, fluid and end-mass, the end effect due to the fluid exiting the pipe as

well as the work done by the array of springs can all be combined together by substituting expressions (16), (18), (20),

(25), (36), (38) and (39) into Hamilton’s principle, Eq. (4). This generates one large equation involving a double integral

from t1 to t2 and from 0 to L; since the variations dy and dz are arbitrary, the integrand must vanish. Moreover, the

terms multiplied by dy are independent of the terms multiplied by dz; consequently what seemed to be one equation may

be separated into two distinct partial differential equations. Keeping in mind that the inextensibility condition has

reduced the system of three variables down to two, the two equations derived describe the 3-D dynamics of a

cantilevered pipe conveying fluid with additional spring constraints and an added end mass. These equations are

expressed in terms of displacements v and w, and they are given below.

(i) The y-equation:

½ðmþM þmedðs� LÞÞ� €vþ EIv0000 þ 2MU _v0 þMU2v00

þ ½mþM þmedðs� LÞ�gv0 � v00
Z L

s

g½mþM þmedðs� LÞ�ds

þ ½mþM þmedðs� LÞ�g
1

2
v0
3
þ

1

2
v0w0

2

� �

�
3

2
v0
2
v00 þ

1

2
w0

2
v00 þ v0w0w00

� �Z L

s

g½mþM þmedðs� LÞ�ds

þ 2MU v0
2 _v0 þ v0w0 _w0 � v00

Z L

s

ðv0 _v0 þ w0 _w0Þds

� �

þMU2 v0
2
v00 þ v0w0w00 � v00

Z L

s

ðv0v00 þ w0w00Þds

� �
þ EIðv0

2
v0000 þ 4v0v00v000 þ v003 þ v0w0w0000 þ 3v0w00w000 þ v00w0w000 þ v00w002Þ

þ v0½mþM þmedðs� LÞ�

Z s

0

ð_v02 þ v0 €v0 þ _w02 þ w0 €w0Þds

� v00
Z L

s

½mþM þmedðs� LÞ�

Z s

0

ð_v02 þ v0 €v0 þ _w02 þ w0 €w0Þdsds
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þ ðKylvþ Kynlv
3 þ Kyzvw2Þ þ Kxv0

Z s

0

ðv0
2
þ w0

2
Þds

� �
dðs� LsÞ

� Kxv00mð0! LsÞ

Z Ls

0

ðv0
2
þ w0

2
Þds ¼ 0, ð40Þ

(ii) The z-equation:

ðmþM þmedðs� LÞÞ €wþ EIw0000 þ 2MU _w0 þMU2w00

þ ½mþM þmedðs� LÞ�gw0 � w00
Z L

s

g½mþM þmedðs� LÞ�ds

þ ½mþM þmedðs� LÞ�g
1

2
w0

3
þ
1

2
w0v0

2

� �

�
3

2
w0

2
w00 þ

1

2
v0
2
w00 þ w0v0v00

� �Z L

s

g½mþM þmedðs� LÞ�ds

þ 2MU w0
2 _w0 þ w0v0 _v0 � w00

Z L

s

ðw0 _w0 þ v0 _v0Þds

� �

þMU2 w0
2
w00 þ w0v0v00 � w00

Z L

s

ðw0w00 þ v0v00Þds

� �
þ EIðw0

2
w0000 þ 4w0w00w000 þ w003 þ w0v0v0000 þ 3w0v00v000 þ w00v0v000 þ w00v002Þ

þ w0½mþM þmedðs� LÞ�

Z s

0

ð _w02 þ w0 €w0 þ _v02 þ v0 €v0Þds

� w00
Z L

s

½mþM þmedðs� LÞ�

Z s

0

ð _w02 þ w0 €w0 þ _v02 þ v0 €v0Þdsds

þ ðKzlwþ Kznlw
3 þ Kyzwv2Þ þ Kxw0

Z s

0

ðv0
2
þ w0

2
Þds

� �
dðs� LsÞ

� Kxw00mð0! LsÞ

Z Ls

0

ðv0
2
þ w0

2
Þds ¼ 0. ð41Þ

It is noted that when analyzing the system for planar motion, say in the xy-plane, all displacements in the z-direction

would be zero. Consequently, Eq. (41) would lose all of its terms, and all coupled nonlinear terms in Eq. (40) would

vanish. Disregarding the intermediate springs, the equation of motion would then reduce to the familiar form found in

Paı̈doussis and Semler (1998); or disregarding the end mass also, i.e. for just the plain cantilevered pipe, to the form

found in Semler et al. (1994) or Paı̈doussis (1998).

All nonlinear terms are of third order. There are no second order, Oð�2Þ, terms due to the symmetrical nature of the system,

i.e. any displacements in the positive y- and z-directions generate equal and opposite reaction forces for equal negative

displacements; alternatively viewed, this says that replacing v by �v and/or w by �w, one obtains the same equation.
6. Dimensionless form of the equations

Introducing nondimensional quantities to allow the analysis of not just one specific system but of a generalized

system, regardless of shape and size,3

x ¼
s

L
; xs ¼

Ls

L
; Z ¼

v

L
; z ¼

w

L
; t ¼

EI

mþM

� �1=2
t

L2
,

u ¼
M

EI

� �1=2

UL; g ¼
mþM

EI
L3g; b ¼

M

mþM
; G ¼

me

ðmþMÞL
,

3In what follows, u denotes the dimensionless flow velocity, as defined in (42), for consistency with much of the published literature.

This should not cause any confusion with the axial displacement u used in the derivations in Sections 2–5, which in any case has

disappeared in the final dimensional Eqs. (40) and (41).
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kx ¼
KxL3

EI
; kyl ¼

KylL
3

EI
; kzl ¼

KzlL
3

EI
,

kynl ¼
KynlL

5

EI
; kznl ¼

KznlL
5

EI
; kyz ¼

KyzL5

EI
, ð42Þ

the nondimensional equations of motion become

(i) The y-equation:

Z0000 þ ½1þ Gdðx� 1Þ�€Zþ 2u
ffiffiffi
b

p
_Z0 þ u2Z00

þ g½1þ Gdðx� 1Þ�Z0 � gZ00
Z 1

x
½1þ Gdðx� 1Þ�dx

þ g½1þ Gdðx� 1Þ�ð1
2
Z03 þ 1

2
Z0z02Þ

� g 3
2
Z02Z00 þ 1

2
z02Z00 þ Z0z0z00

	 
 Z 1

x
½1þ Gdðx� 1Þ�dx

þ 2u
ffiffiffi
b

p
Z02 _Z0 þ Z0z0 _z

0
� Z00

Z 1

x
ðZ0 _Z0 þ z0 _z

0
Þdx

� �

þ u2 Z02Z00 þ Z0z0z00 � Z00
Z 1

x
ðZ0Z00 þ z0z00Þdx

� �
þ ½Z02Z0000 þ 4Z0Z00Z000 þ Z003 þ Z0z0z0000 þ 3Z0z00z000 þ Z00z0z000 þ Z00z002�

þ Z0½1þ Gdðx� 1Þ�

Z x

0

ð_Z02 þ Z0 €Z0 þ _z
02
þ z0 €z

0
Þdx

� Z00
Z 1

x
½1þ Gdðx� 1Þ�

Z x

0

ð_Z02 þ Z0 €Z0 þ _z
02
þ z0 €z

0
Þ dxdx

þ ðkylZþ kynlZ3 þ kyzZz
2
Þ þ kxZ0

Z x

0

ðz02 þ Z02Þdx
� �

dðx� xsÞ

� kxZ00mð0! xsÞ

Z xs

0

ðz02 þ Z02Þdx ¼ 0. ð43Þ

(ii) The z-equation:

z0000 þ ½1þ Gdðx� 1Þ�€zþ 2u
ffiffiffi
b

p
_z
0
þ u2z00

þ g½1þ Gdðx� 1Þ�z0 � gz00
Z 1

x
½1þ Gdðx� 1Þ�dx

þ g½1þ Gdðx� 1Þ�ð1
2
z03 þ 1

2
z0Z02Þ

� gð3
2
z02z00 þ 1

2
Z02z00 þ z0Z0Z00Þ

Z 1

x
½1þ Gdðx� 1Þ�dx

þ 2u
ffiffiffi
b

p
z02 _z
0
þ z0Z0 _Z0 � z00

Z 1

x
ðz0 _z
0
þ Z0 _Z0Þdx

� �

þ u2 z02z00 þ z0Z0Z00 � z00
Z 1

x
ðz0z00 þ Z0Z00Þdx

� �
þ ½z02z0000 þ 4z0z00z000 þ z003 þ z0Z0Z0000 þ 3z0Z00Z000 þ z00Z0Z000 þ z00Z002�

þ z0½1þ Gdðx� 1Þ�

Z x

0

ð_z
02
þ z0 €z

0
þ _Z02 þ Z0 €Z0Þdx

� z00
Z 1

x
½1þ Gdðx� 1Þ�

Z x

0

ð_z
02
þ z0 €z

0
þ _Z02 þ Z0 €Z0Þdxdx

þ ðkzlzþ kznlz3 þ kyzzZ2Þ þ kxz0
Z x

0

ðz02 þ Z02Þdx
� �

dðx� xsÞ

� kxz
00mð0! xsÞ

Z xs

0

ðz02 þ Z02Þdx ¼ 0. ð44Þ
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By incorporating the forces associated with the end mass in the equations of motion, the boundary conditions are the

same as for a linear plain cantilever beam, namely

Zð0Þ ¼ Z0ð0Þ ¼ Z00ð1Þ ¼ Z000ð1Þ ¼ 0,

zð0Þ ¼ z0ð0Þ ¼ z00ð1Þ ¼ z000ð1Þ ¼ 0. ð45Þ
7. Method of solution

The two partial differential equations have an infinite number of degrees of freedom. In order to analyze the

equations numerically, the continuous system is discretized to one with a finite number of degrees of freedom. One way

of doing this is to define the shape of the pipe in time through a combination of the dominant modes of a convenient

subsystem, say the linear cantilever beam. Often, and for relatively low flow velocities (Paı̈doussis, 1998), 2–4 modes are

sufficient to obtain reliable results.

Galerkin’s discretization method will be applied to the equations of motion, such that

Zðx; tÞ ¼
XN

r¼1

frðxÞqrðtÞ, (46)

zðx; tÞ ¼
XN

r¼1

crðxÞprðtÞ, (47)

where frðxÞ and crðxÞ are the dimensionless cantilever beam eigenfunctions, and hence appropriate comparison

functions as they satisfy the same boundary conditions as the problem at hand. For the same reason, frðxÞ ¼ crðxÞ,
corresponding to the respective eigenfunctions in the y and z direction; however, the difference in notation will be

maintained to avoid confusion in the case of the coupled terms and so that, in the end, the distinction between the Z-
and z-terms remains obvious. The corresponding generalized coordinates are qrðtÞ and prðtÞ. Once Eqs. (46) and (47) are

substituted into the dimensionless equations of motion, they are multiplied by the corresponding beam eigenfunction

and integrated with respect to x from 0 to 1. These eigenfunctions are orthonormal, i.e.Z 1

0

fsfr dx ¼ dsr, (48)

where dsr is the Kronecker delta; it can also be shown easily that

f0000r ¼ l4rfr, (49)

lr being the rth dimensionless eigenvalue of the cantilever beam. These relationships become useful when solving the

equations of motion numerically.

The y-equation can be simplified to the following form:

mij €qj þ cij _qj þ ðkij þ kly
ij Þqj þ ðBijkl þ knly

ijklÞqjqkql þDijklqjqk _ql þ Eijklqj _qk _ql

þ Fijklqjqk €ql þ ðHijkl þ kyzz
ijklÞqjpkpl þ Lijklqjpk _pl þMijklqj _pk _pl þNijklqjpk €pl ¼ 0; ð50Þ

similarly, the z-equation becomes

mij €pj þ cij _pj þ ðkij þ klz
ij Þpj þ ðBijkl þ knlz

ijklÞpjpkpl þDijklpjpk _pl þ Eijklpj _pk _pl

þ Fijklpjpk €pl þ ðHijkl þ kzyy
ijkl Þpjqkql þ Lijklpjqk _ql þMijklpj _qk _ql þNijklpjqk €ql ¼ 0. ð51Þ

The linear and nonlinear coefficients in these equations are defined as follows:

mij ¼

Z 1

0

fifj dxþ G½fifj �x¼1,

cij ¼ 2u
ffiffiffi
b

p Z 1

0

fif
0
j dx,
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kij ¼

Z 1

0

fif
0000
j dxþ ðu2 � gGÞ

Z 1

0

fif
00
j dx

þ g
Z 1

0

fif
0
j dxþ gG½fif

0
j �x¼1 � g

Z 1

0

fif
00
j dx�

Z 1

0

fixf
00
j dx

� �
,

Bijkl ¼ u2
Z 1

0

fi f0jf
0
kf
00
l � f00j

Z 1

x
f0kf

00
l dx

� �
dx

þ g
Z 1

0

fi

1

2
f0jf

0
kf
0
l �

3
2
ð1� xÞf0jf

0
kf
00
l

� �
dx

� gG
Z 1

0

fi

3

2
f0jf

0
kf
00
l

� �
dx�

1

2
½fif

0
jf
0
kf
0
l �x¼1

� �

þ

Z 1

0

fiðf
0
jf
0
kf
0000
l þ 4f0jf

00
kf
000
l þ f00j f

00
kf
00
l Þdx,

Dijkl ¼ 2u
ffiffiffi
b

p Z 1

0

fi f0jf
0
kf
0
l � f00j

Z 1

x
f0kf

0
l dx

� �
dx,

Eijkl ¼ Fijkl ¼

Z 1

0

fi f0j

Z x

0

f0kf
0
l dx� f00j

Z 1

x

Z x

0

f0kf
0
l dxdx

� �
dx

þ G½fif
0
j �x¼1

Z 1

0

f0kf
0
l dx� G

Z 1

0

fif
00
j dx

Z 1

0

f0kf
0
l dx,

Hijkl ¼ g
Z 1

0

fi

1

2
f0jc

0
kc
0
l � ð1� xÞ

1

2
f00j c

0
kc
0
l þ f0jc

0
kc
00
l

� �� �
dx

� gG
Z 1

0

fi

1

2
f00j c

0
kc
0
l þ f0jc

0
kc
00
l

� �
dx�

1

2
½fif

0
jc
0
kc
0
l �x¼1

� �

þ u2
Z 1

0

fi f0jc
0
kc
00
l � f00j

Z 1

x
c0kc

00
l dx

� �
dx

þ

Z 1

0

fiðf
0
jc
0
kc
0000
l þ 3f0jc

00
kc
000
l þ f00j c

0
kc
000
l þ f00j c

00
kc
00
l Þdx,

Lijkl ¼ 2u
ffiffiffi
b

p Z 1

0

fi f0jc
0
kc
0
l � f00j

Z 1

x
c0kc

0
l dx

� �
dx,

Mijkl ¼ Nijkl ¼

Z 1

0

fi f0j

Z x

0

c0kc
0
l dx� f00j

Z 1

x

Z x

0

c0kc
0
l dxdx

� �
dx

þ G½fif
0
j �x¼1

Z 1

0

c0kc
0
l dx� G

Z 1

0

fif
00
j dx

Z 1

0

c0kc
0
l dx; ð52Þ

the spring coefficients are

kly
ij ¼

Z 1

0

kylfifjdðx� xsÞdx,

klz
ij ¼

Z 1

0

kzlcicjdðx� xsÞdx,
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knly
ijkl ¼

Z 1

0

ðkynlfifjfkfldðx� xsÞ þ kxKijklÞdx,

kyzz
ijkl ¼

Z 1

0

ðkyzfifjckcldðx� xsÞ þ kxKijklÞdx,

knlz
ijkl ¼

Z 1

0

ðkznlcicjckcldðx� xsÞ þ kxKijklÞdx,

kzyy
ijkl ¼

Z 1

0

ðkyzcicjfkfldðx� xsÞ þ kxKijklÞdx, ð53Þ

in which

Kijkl ¼ fif
0
jdðx� xsÞ

Z x

0

f0kf
0
l dx� mð0! xsÞfif

00
j

Z xs

0

f0kf
0
l dx,

or Z 1

0

Kijkl dx ¼
Z 1

0

fif
0
jdðx� xsÞ

Z x

0

f0kf
0
l dx� mð0! xsÞfif

00
j

Z xs

0

f0kf
0
l dx

� �
dx

¼ ½fif
0
j �x¼xs

Z xs

0

f0kf
0
l dx�

Z xs

0

fif
00
j

Z xs

0

f0kf
0
l dxdx. ð54Þ

Since the eigenfunctions are the same in both y and z directions, the coefficients for the z-equation are the same as for

the y-equation, as given in Eqs. (52)–(54).
8. Conclusion

In this paper, the nonlinear equations of 3-D motion of a cantilevered pipe conveying incompressible fluid have been

derived to Oð�3Þ, where the lateral deflection of the pipe is considered to be of Oð�Þ. In their most general form these

equations account for the possible existence of (i) either a four-spring or a two-spring constraint at an axial location

between the clamped and free ends of the pipe, and (ii) a dimensionally small end-mass attached to the free end of the

pipe.

The equations of motion of the plain pipe (i.e. without springs and end-mass) have been derived first; they are quite

similar to those obtained by Semler et al. (1994), and the derivation followed the same path. Accordingly, it was not

necessary to reproduce these derivations here in too much, repetitious detail. Nevertheless, the equations obtained for

motion in each of two mutually perpendicular planes contain the nonlinear cross-coupling terms associated with motion

in the other direction, totally absent in the earlier derivation.

The linear equation of motion accounting for the presence of an end-mass may be found in Paı̈doussis and Luu

(1985), and the nonlinear equation in Paı̈doussis and Semler (1998), in both cases for planar motions only. Nevertheless,

the manner of incorporating the effect of this end-mass in the 3-D equations of motion is given in this paper in fair

detail. The effect of the end-mass was incorporated in the equations of motion through a Dirac delta function, rather

than in the boundary conditions, for convenience in the method of solution outlined here and used in the Part 3

(Modarres-Sadeghi et al., 2007) paper.

It should be signalled that both with and without the end-mass, an interesting aspect of the equations of motion is

that they contain nonlinear inertial terms, which renders their solution rather tricky (Semler et al., 1996).

The necessary modifications to the equations of motion in order to incorporate the four- or two-spring arrays

somewhere along the length of the pipe are described in considerably greater detail than the rest, as this aspect is not

available, in the form treated here, elsewhere in any archival publication. It is reiterated that, although the springs are

linear, they generate nonlinear terms also, because of large deformation of the pipe to which they are attached; i.e., they

give rise to geometric nonlinearities. Furthermore, though at equilibrium the springs all lie in a specific plane

perpendicular to the pipe, they do not stay in a plane in the course of arbitrary pipe motions, and in fact generate forces

in the axial direction also.

In the main text, the springs are incorporated as if they were connected to the centreline of the pipe, which of course is

only mathematically feasible. In Appendix C, the formulation is modified to correspond to the physical system in the

experiments described in the Part 2 (Paı̈doussis et al., 2007) paper, where the springs are attached to a short thin ring

fitted over the pipe at the desired location.
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The equations of motion have been discretized and are, therefore, ready for solution in Part 2 (Paı̈doussis et al., 2007)

and Part 3 (Modarres-Sadeghi et al., 2007) of this study, in which the dynamics of the system with the spring constraint

and the end-mass, respectively, are examined. In addition to typical results to illustrate the dynamical behaviour of

these systems, ad hoc experiments to test the theory are also described, and comparisons between theory and experiment

are undertaken.
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Appendix A. Additional details for the four-spring configuration derivation

It seems appropriate to give more detail on the way the expressions for the forces associated with the nonlinear

springs were obtained.

A.1. Expressions for Ri and nRi

As shown in Eq. (26), the resulting force from each spring may be vectorized by multiplying the deformation force of

the spring, kðRi � LoÞ, by the unit vector along the length of the spring, nRi
, where

Ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ ðQ� vÞ2 þ ðP� wÞ2

q
,

nRi
¼
�ui � ðQ� nÞj � ðP� wÞk

Ri

, ðA:1Þ

and where Lo is the unstretched length of the spring. The � sign depends on which quadrant of the yz-plane the spring is

in, at equilibrium.4 The forces exerted by each spring, as shown in Fig. 3, are

F1 ¼ k 1�
Lo

R1

� �
ð�ui þ ðQ� vÞj þ ðP� wÞkÞ, (A.2)

F2 ¼ k 1�
Lo

R2

� �
ð�ui � ðQþ vÞj þ ðP� wÞkÞ, (A.3)

F3 ¼ k 1�
Lo

R3

� �
ð�ui � ðQþ vÞj � ðPþ wÞkÞ, (A.4)

F4 ¼ k 1�
Lo

R4

� �
ð�ui þ ðQ� vÞj � ðPþ wÞkÞ. (A.5)

Adding these forces and decomposing them into forces acting in the x, y and z direction, respectively, we obtain

Fu ¼ �k 4� Lo
1

R1
þ

1

R2
þ

1

R3
þ

1

R4

� �� �
u,

Fv ¼ �k 4vþ Lo
ðQ� vÞ

R1
�
ðQþ vÞ

R2
�
ðQþ vÞ

R3
þ
ðQ� vÞ

R4

� �� �
,

Fw ¼ �k 4wþ Lo
ðP� wÞ

R1
þ
ðP� wÞ

R2
�
ðPþ wÞ

R3
�
ðPþ wÞ

R4

� �� �
. ðA:6Þ

The inextensibility condition can be written as

u ¼ �
1

2

Z s

0

ðv02 þ w02Þds; (A.7)
4Here, as in Sections 2–5, u stands for the axial deformation of the pipe, rather than the dimensionless flow velocity as in Section 6

and in Parts 2 and 3.
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it is obvious that u is of order of magnitude Oð�2Þ, hence it is often disregarded with respect to lower-order terms in the

following manipulations, for example in the expression for Ri where u2 is of the order Oð�4Þ.
The next step consists of applying Taylor series expansions with respect to v and w, correct up to third order, Oð�3Þ, to

the expressions in Eq. (A.6). After replacing P and Q by Ro and y via

P ¼ Ro cos y; Q ¼ Ro sin y; P2 þQ2 ¼ R2
o, (A.8)

and after some rearrangement, the expressions presented in Eqs. (27)–(29) can be obtained and are given here again for

convenience

Fu ¼ 2k 1�
Lo

Ro

� �
dðs� LsÞ

Z s

0

ðv02 þ w02Þds, (A.9)

Fv ¼ dðs� LsÞ � 4k 1�
Lo

Ro

cos2 y
� �

v

(

� 2k
Lo

R3
o

cos2 yðcos2 y� 4 sin2 yÞv3 � 2k
Lo

R3
o

ð15 cos2 y sin2 y� 2Þvw2

)
, ðA:10Þ

Fw ¼ dðs� LsÞ � 4k 1�
Lo

Ro

sin2 y
� �

w

(

� 2k
Lo

R3
o

sin2 yðsin2 y� 4 cos2 yÞw3 � 2k
Lo

R3
o

ð15 cos2 y sin2 y� 2Þwv2

)
. ðA:11Þ

A.2. Derivation of Eq. (36) from Eqs. (33)–(35)

Some details on the steps necessary to obtain Eq. (36) from Eqs. (33)–(35) are given here to help the reader who may

be interested in reproducing these equations.

Applying the inextensibility condition to the expression of virtual work acting in the x-direction, Eq. (33), we obtain

dW u ¼

Z L

0

Kx

Z s

0

ðv02 þ w02Þds

� �
dðs� LsÞ �v0dvþ

Z s

0

v00dvds

� �
ds

þ

Z L

0

Kx

Z s

0

ðv02 þ w02Þds

� �
dðs� LsÞ �w0dwþ

Z s

0

w00dwds

� �
ds. ðA:12Þ

Applying the property of integrals given in Eq. (24), expression (A.12) can be manipulated to obtain the following:

dW u ¼ �

Z L

0

Kx

Z s

0

ðv02 þ w02Þds

� �
dðs� LsÞw

0dwds

�

Z L

0

Kx

Z s

0

ðv02 þ w02Þds

� �
dðs� LsÞv

0dvds

þ

Z L

0

Kxw00
Z L

s

dðs� LsÞ

Z s

0

ðv02 þ w02Þdsds

� �
dwds

þ

Z L

0

Kxv00
Z L

s

dðs� LsÞ

Z s

0

ðv02 þ w02Þdsds

� �
dvds. ðA:13Þ

Proceeding in a similar way for dW v and dW w, we obtain Eq. (36).
Appendix B. The spring forces for the two-spring configuration

It is of interest to study the dynamics of a cantilevered pipe conveying fluid constrained by an array of two

intermediate springs instead of four. In this particular analysis, as shown in Fig. 4, at equilibrium the two springs are

symmetrically disposed with respect to the zx-plane.



ARTICLE IN PRESS

Fig. 4. Two-spring configuration, where y , P and Q are predetermined and P2 þQ2 ¼ R2
o; here LoaRo, hence there is a pre-tension

effect.
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Starting from Eq. (26), with N ¼ 2 for the forces exerted by the two springs acting on the pipe, and making use of F3

and F4 from Eqs. (A.5), the forces acting in the x, y and z directions, respectively, are

Fu ¼ �k 2� Lo

1

R3
þ

1

R4

� �� �
u,

Fv ¼ �k 2vþ Lo

�ðQþ vÞ

R3
þ
ðQ� vÞ

R4

� �� �
,

Fw ¼ �k 2ðPþ wÞ � Lo

ðPþ wÞ

R3
þ
ðPþ wÞ

R4

� �� �
. ðB:1Þ

Applying Taylor series expansions and the inextensibility condition, the following expressions can be obtained:

Fu ¼ ðK1�1Þdðs� LsÞ

Z s

0

ðv02 þ w02Þds, (B.2)

Fv ¼ ð�K1�3vþ K2�2vwþ K3�3v3 þ K3�2vw2Þdðs� LsÞ, (B.3)

Fw ¼ ð�K0 � K1�2w� K2�1w2 þ 1
2

K2�2v2 � K3�1w3 þ K3�2wv2Þdðs� LsÞ, (B.4)

where

K0 ¼ 2kðRo � LoÞ cos y; K1�1 ¼ k 1�
Lo

Ro

� �
; K1�2 ¼ 2k 1�

Lo

Ro

þ
Lo

Ro

cos2 y
� �

,

K1�3 ¼ 2k 1�
Lo

Ro

cos2 y
� �

; K2�1 ¼ 3k
Lo

R2
o

ðcos y� cos3 yÞ,

K2�2 ¼ k
Lo

R2
o

ð4 cos y� 6 cos3 yÞ; K3�1 ¼ k
Lo

R3
o

ð1� 6 cos2 yþ 5 cos4 yÞ,

K3�2 ¼ k
Lo

R3
o

ð2� 15 cos2 yþ 15 cos4 yÞ; K3�3 ¼ k
Lo

R3
o

ð4 cos2 y� 5 cos4 yÞ. ðB:5Þ

Note that y is half of the angle separating the springs; thus, if y is set to zero, this is equivalent to analyzing the

problem with only one spring with a linear stiffness of 2k. The constant coefficients, Kn�m, are used to simplify the

expressions, the subscript n being an index to relate similar coefficients: n ¼ 1 refers to coefficients involving kð. . .Þ;
n ¼ 2 refers to those of the form kLo=R2

oð. . .Þ; and n ¼ 3 to those of the form kLo=R3
oð. . .Þ. The subscript m is just an

arbitrary index.

The virtual work associated with virtual displacements du, dv and dw for the two-spring arrangement may be

expressed as

dW u ¼

Z L

0

Fududs ¼

Z L

0

K1�1

Z s

0

ðv02 þ w02Þds

� �
dðs� LsÞduds, (B.6)
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dW v ¼

Z L

0

Fvdvds ¼ �

Z L

0

ðK1�3v� K2�2vw� K3�3v3 � K3�2vw2Þdðs� LsÞdvds, (B.7)

dW w ¼

Z L

0

Fwdwds ¼ �

Z L

0

ðK0 þ K1�2wþ K2�1w2 � 1
2
K2�2v2Þdðs� LsÞ dwds

�

Z L

0

ðK3�1w3 � K3�2wv2Þdðs� LsÞ dwds. ðB:8Þ

By applying the inextensibility condition and utilizing Eq. (24) in the expression of virtual work acting in the axial

direction, dW u, and after some further manipulation, one obtains the following expression for the virtual work done by

a two-spring arrangement symmetric in the zx-plane and attached to the pipe at s ¼ Ls:Z t2

t1

dW dt

¼

Z t2

t1

ðdW u þ dW v þ dW wÞdt

�

Z t2

t1

Z L

0

ðK1�3v� K2�2vw� K3�3v3 � K3�2vw2Þdðs� LsÞ dvdsdt

�

Z t2

t1

Z L

0

K1�1 v0dðs� LsÞ

Z s

0

ðv02 þ w02Þds� v00mð0! LsÞ

Z Ls

0

ðv02 þ w02Þds

� �
dvdsdt

�

Z t2

t1

Z L

0

K0 þ K1�2wþ K2�1w2 �
1

2
K2�2v2 þ K3�1w3 � K3�2wv2

� �
dðs� LsÞ dwdsdt

�

Z t2

t1

Z L

0

K1�1 w0dðs� LsÞ

Z s

0

ðv02 þ w02Þds� w00mð0! LsÞ

Z Ls

0

ðv02 þ w02Þds

� �
dwdsdt. ðB:9Þ

This expression can be used to replace the four-spring array in the dimensionless equations of motion; specifically, the

last three terms in each equation are replaced by the following:

y-equation:

þ ðk1�3Z� k2�2zZ� k3�3Z3 � k3�2Zz
2
Þdðx� xsÞ

þ k1�1 Z0dðx� xsÞ

Z x

0

ðz02 þ Z02Þdx� Z00mð0! xsÞ

Z xs

0

ðz02 þ Z02Þdx
� �

, ðB:10Þ

z-equation:

þ ðk0 þ k1�2zþ k2�1z
2
�

1

2
k2�2Z2 þ k3�1z

3
� k3�2zZ2Þdðx� xsÞ

þ k1�1 z0dðx� xsÞ

Z x

0

ðz02 þ Z02Þdx� z00mð0! xsÞ

Z xs

0

ðz02 þ Z02Þdx
� �

, ðB:11Þ

where

k0 ¼
K0L2

EI
; k1�i ¼

K1�iL
3

EI
; k2�i ¼

K2�iL
4

EI
; k3�i ¼

K3�iL
5

EI
. (B.12)

An interesting observation can be made here: second-order, Oð�2Þ, terms are present in this case because of the

asymmetrical nature of the array of springs. Also, if the initial quantities Lo and Ro are not equal, i.e. if the springs are

fixed to the pipe in a pre-tensioned (extended) position, the initial position of the pipe, when U ¼ 0, will not be along

the x-axis but rather in a slightly bent state of equilibrium, as cross sectionally shown in Fig. 4.
Appendix C. Moments caused by physical attachment of the springs

With certain parameters, notably when the spring position along the length of the pipe is close to the free end, the

experimentally observed divergence (buckling) was found to occur initially in a plane perpendicular to the theoretically

predicted plane of divergence (Saaid, 1999; Wadham-Gagnon, 2004). This behaviour seems to be related to the

assumption that the springs are attached to the centreline of the pipe. In the experimental set-up, these springs are
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attached to a thin ring, which in turn is mounted on the outside of the pipe. Moments due to this configuration were

previously thought to be negligible, but they turn out to have a first order, Oð�Þ, effect in the equations of motion;

therefore, they may influence the dynamics, and more specifically the plane of least resistance in which the system will

initially diverge. An adequate model for these moments is presented here.
C.1. Set-up of the mathematical model

Each spring is assigned a vector, ai ¼ aixi þ aiyj þ aizk, where subscripts i ¼ 1; 2; 3; 4, refer to each of the springs. Let

vector ai be normal to the centreline of the pipe passing through the point of attachment of each spring, such that

sLS
� ai ¼ 0, (C.1)

where sLS
is a unit vector tangent to the pipe centreline at s ¼ Ls, which can be expressed as

sLs
¼ ½x0i þ y0j þ z0k�dðs� LsÞ. (C.2)

It is quite obvious that, when the pipe is at rest in the equilibrium configuration, the x-component of vector ai, aix, is

zero since the springs are in the yz-plane. Assuming there is no twist in the pipe, the y- and z-components of ai can be

approximated as known constants determined by their respective initial spring configurations. From Fig. 5, these

components are expressed as follows:

aiy ¼ � sinc; aiz ¼ � cosc. (C.3)

Solving for aix by substituting (C.2) into (C.1),

aix ¼
�y0aiy � z0aiz

x0

� �
dðs� LsÞ,
Fig. 5. (a) Display of a four spring array, when the springs are assumed to be connected to points on the outer surface of the pipe. (b)

Expanded view for the attachment of the springs on to the surface of the pipe, corresponding to the configuration used in the

experiments, showing that the line of action of the springs does not necessarily go through the centreline of the pipe.
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from which a nonunit vector, say a0i for the sake of the argument, can be obtained

a0i ¼
�y0aiy � z0aix

x0

� �
dðs� LsÞi � sincj � cosck;

using linear Taylor series expansions,

1

x0
’ 1þ

1

2
y0

2
þ
1

2
z0
2
’ 1,

and

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0aiy þ z0aizÞ

2
þ 1

q ’ 1� ðy0aiyÞ
2
� ðy0aiyz0aizÞ

2
� ðz0aizÞ

2
’ 1.

It is readily seen that a unit vector ai can be obtained from

ai ¼
a0i
ka0ik
¼ ð�y0 sinc� z0 coscÞdðs� LsÞi � sincj � cosck. (C.4)

Using the parallel axes theorem, the spring force acting on the pipe may be represented as a force–moment couple

acting on the pipe centreline, where the force remains the same and the moment is expressed as

M i ¼ aai 	 F i, (C.5)

where F i is the force exerted by spring i, and coefficient a is the distance between the centreline of the pipe at s ¼ Ls and

the point of connection of each spring. In this case, we take a to have the same value for each spring. The F i forces are

the same as those given in Eqs. (A.2)–(A.5).

Finally, the total moment, M, is obtained by summing the M is of each spring

M ¼
X4
i¼1

M i ¼Myj þMzk. (C.6)

Summing the M i’s obtained from Eq. (C.5) with Eq. (C.4) and forces in Eqs. (A.2)–(A.5), and after substituting P

and Q by Ro and y via

P ¼ Ro cos y; Q ¼ Ro sin y; P2 þQ2 ¼ R2
o, (C.7)

the vector components of M become

My ¼ 4ak cosðcÞ cosðyÞðRo � LoÞz
0, (C.8)

Mx ¼ �4ak sinðcÞ sinðyÞðRo � LoÞy
0, (C.9)

C.2. The virtual work expression

The virtual work done by moment M on the system may be expressed as

dW M ¼M � dH, (C.10)

where H ¼ Yyj þYzk is the pipe rotation vector; note that the assumption of no axial-twist eliminates rotations in the

x-direction.

Expressing virtual rotation dYy in terms of Eulerian coordinates and keeping first-order, Oð�Þ, terms only, the

following can be obtained from the centreline tangent vector:

dYy ’ dðtanYyÞ ¼ d
z0

x0

� �
’ dz0, (C.11)

similarly for virtual rotation dYz,

dYz ’ dðtanYzÞ ¼ d
y0

x0

� �
’ dy0. (C.12)
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Putting together what has been given so far in this appendix, the moments due to the spring configuration will

contribute to the dynamics of the system as stated in Hamilton’s principle, see expression (4), such thatZ t2

t1

dW M dt ¼

Z t2

t1

ðM � dqÞdt ¼

Z t2

t1

ðMydYy þMxdYzÞdt

¼

Z t2

t1

ðMydz0 þMzdy0Þdt ¼

Z t2

t1

ðMydw0 þMzdv0Þdt. ðC:13Þ

Substituting Eqs. (C.8) and (C.9) into Eq. (C.13) and integrating by parts, we obtainZ t2

t1

dW M dt ¼

Z t2

t1

ðM � dqÞdt

¼

Z t2

t1

Z L

0

½ð4ak cosðcÞ cosðyÞðRo � LoÞw
0Þ dw0�dðs� LsÞdsdt

�

Z t2

t1

Z L

0

½ð4ak sinðcÞ sinðyÞðRo � LoÞv
0Þ dv0�dðs� LsÞdsdt

¼ 4ak cosðcÞ cosðyÞðRo � LoÞ

Z t2

t1

½w0dðs� LsÞ dw�L0 �

Z L

0

ðw00dwÞdðs� LsÞds

� �
dt

� 4ak sinðcÞ sinðyÞðRo � LoÞ

Z t2

t1

½v0dðs� LsÞ dv�L0 �

Z L

0

ðv00dv0Þdðs� LsÞds

� �
dt; ðC:14Þ

the linear contribution of the moments induced by the springs may be expressed in the form of virtual work as follows:Z t2

t1

dW M dt ¼ � 4ak cosðcÞ cosðyÞðRo � LoÞ

Z t2

t1

Z L

0

ðw00dwÞdðs� LsÞdsdt

þ 4ak sinðcÞ sinðyÞðRo � LoÞ

Z t2

t1

Z L

0

ðv00dvÞdðs� LsÞdsdt. ðC:15Þ

Transforming Eq. (C.15) into dimensionless formZ t2

t1
dW M dt ¼ �

Z t2

t1

Z 1

0

Pyz
00dðx� xsÞdzdxdtþ

Z t2

t1

Z 1

0

PzZ00dðx� xsÞdZdxdt, (C.16)

where

Py ¼ 4ak cosðcÞ cosðyÞðRo � LoÞ
L

EI
; Pz ¼ 4ak sinðcÞ sinðyÞðRo � LoÞ

L

EI
. (C.17)
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